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A laminar jet in a rotating fluid 

By D. M. HERBERT 
Department of Mathematics, the University of Manchester* 

(Received 3 Septeinbcr 1964 and in revised form 33 March 1965) 

A solution is presented of the asymptotic flow due to a point source of momentum 
in a uniformly rotating unbounded environment. Under the condition that the 
relative swirl velocity of the jet is small compared with the ambient swirl velocity, 
the equations of motion reduce to a set of linear equations. These equations are 
expressed in terms of similarity variables and a single ordinary differential 
equation is derived in terms of the similarity stream function. The profiles of 
the flow are calculated numerically. 

The jet is shown to have a narrow viscous core whose thickness increases with 
distance z from the virtual source of momentum as (vz/Q)*, where v is the kine- 
matic viscosity and Q the ambient angular velocity. 

Introduction 
The effect of a strong ambient rotation on the behaviour ofa developed laminar 

jet is considered. The ambient fluid is taken to be unbounded under the assump- 
tion that the presence of rigid boundaries rotating with the ambient fluid will 
not change the essential features of the flow. Although this assumption may 
restrict the relevance of the problem to the real physical situation, the results 
obtained below indicate that the restriction may not be too severe, especially 
for lateral boundaries. For it is found that the constraint imposed on the jet 
flow by the strong ambient rotation results in the radial mass flux decreasing 
to zero at large distances from the jet axis. Thus, the entire flow arising from the 
source of momentum is confined in the radial direction. It follows that lateral 
boundaries, provided that they are sufficiently distant from the jet axis, should 
be of little significance. 

The influence of a transverse boundary behind the source of momentum is 
more difficult to assess, but provided that the source is placed in the interior of 
the fluid at a distance from the boundary, it should be negligibly small. It re- 
mains to consider what is probably the most important effect of all, namely, that 
due to a transverse boundaryin front of the source. As the jet meets the boundary, 
fluid from the core attempts to spread radially. However, this motion is weak 
and takes place against the strong constraint on radial motion imposed by the 
ambient pressure field. Hence, the radial motion may be expected to be checked 
quickly and a weak reversed axial flow created outside the jet core. In  such a 
situation, the influence of the transverse boundary is not significant throughout 
the entire flow but is limited to a region of the flow adjacent to the boundary. In 
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this 'adjustment' region the influence of the boundary is decreased, by the 
action of viscosity, with increasing distance from the boundary. Provided 
that the distance between the source and the boundary is sufficiently great, there 
is a region of the flow beyond the 'adjustment ' region in which it is a reasonable 
approximation to flow conditions to take the ambient fluid as unbounded. 

Even though the results obtained may be of only limited application, they are 
of interest in themselves as they reveal several unexpected consequences of the 
strong rotational stratification. 

The equations of motion 
The behaviour of a round laminar jet of incompressible viscous fluid is con- 

sidered. The ambient fluid is taken to be unbounded and in uniform rotation 
about the jet axis with angular velocity Q. A system of cylindrical polar co- 
ordinates ( r ,O,z ) ,  with origin at  the virtual source of the jet, is used within a 
frame of reference which rotates with an angular velocity (0, 0, Q). The velocity 
components, relative to the rotating frame, are denoted by (u, v, w). 

Assuming the flow to be steady and axi-symmetric, the equations of motion 
are 

where 

(3) 

Hence, relative to a fixed frame of reference, p(p + &Qzr2) is the pressure, and 
v+ Qr the swirl velocity, at a radial distance r .  p is the density and v the kine- 
matic viscosity of the fluid. 

The set of equations is completed by the continuity equation 

Equation (3) may be integrated over a transverse plane to give an integral 
expression for the constant axial flux of momentum, 

In deriving (5), i t  has been assumed that 

ruw-+O, raw/ar-+O as r+m. 

In  the following analysis, the orders of magnitude of radial and axial lengths 
will be denoted by 6 and I ,  respectively, and of all other quantities by the corre- 
sponding capital letter. 
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Consider first the continuity equation. The terms are of order U / S  and WIZ, 

U 
W 

respectively, and so 
- = 0 (;I. 

Using (if, the orders of magnitude of the terms in equations (1)-(3), 
the inertia terms are 

1, 1, 1, 
1 
- 

RU’ 

The terms in the integral expression ( 5 )  are of order 

M ,  Z2U2, S2P, vSU. 

In the above, RcT = USv-I, R, = V76v-l and R, = V(OS)-l. Thus, Ru and Rp. 
have the form of Reynolds numbers for the flow. The Rossby number for the 
flow reduces to the approximate form R, if U < V.  As this condition is found to 
hold later, Ru may be considered as the relevant Rossby number. 

The discussion is now limited to those jet flows in which the relative swirl 
velocity is small compared with the ambient swirl velocity, that is 

R, = ~ ( l ) .  (ii) 

There is also the condition arising from the boundary layer nature of the flow, 

S/Z = o(1). (iii) 

Using conditions (ii) and (iii) it  follows from (7) that 

Ru = O(RU), iiv) 

and so equation ( 2 )  represents primarily a balance between viscous and Coriolis 
forces. The principal terms in equation (3) are now seen to be the pressure and 
viscous-force terms. These give rise to the condition 

P 
U2 = 0 (i (;)2). 

From these conditions, equation (1) is found to reduce to a balance between the 
Coriolis acceleration and the radial pressure-gradient. The condition arising 
from this balance is 

(vi) R,./R, = O(Z/S). 

Consider now the terms in the integral expression ( 5 ) .  The orders of magnitude 
of these terms, (9), may be expressed conveniently in non-dimensional forms by 
means of v. They become, using conditions (iv) and (v) 

M/v2,  (R,(@9}2. R,(Z/a)2, R,, (10) 
5-2 
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where M4v-l is the only non-dimensional grouping of the external parameters 
of the flow and may be considered as the overall Reynolds number for the flow. 

M/v2  = O{R,(Z/6)2), (vii) Hence 

and the most important contribution to the integral is seen to come from the 
pressure term. That is, the convection and viscous diffusion of the axial momen- 
tum flux are small compared with the effect of the pressure. This is in marked 
contrast to jets in a still environment where convection is most effective in 
transporting momentum. 

The conditions (vi), (vii), (iv), (i) and (v) imply, in order, that 

s = O{(vl/!2)f}, v = O(M/vZ), u = o { M / ( ~ v 2 ) + z ~ ) ,  

w= O(M/vZ),  P = O{M(Q/vE)~).  (viii) 

Hence, those jet flows for which R,, is small have a narrow viscous core whose 
thickness increases with axial distance z from the virtual source as ( v x / Q ) * .  It 
appears also from (viii) that the axial and relative swirl velocities are of the same 
order. Thus, the basic assumption of the analysis, that R, is small, is seen to 
imply slow jet motion. 

I n  the above analysis, no conditions have been imposed on the external 
parameters of the flow. It is not possible, therefore, to derive a condition in 
terms of these parameters alone for which the above reduction is valid. However, 
using (viii), condition (vii) may be rearranged to give an inequality in terms of z ,  
namely 

z 9 (M/v2)s (v /Q)* .  (ix) 

It follows that the reduced equations are valid in that region of the flow where 
condition (ix) is satisfied. 

The reduced equations 
The reduced equations of motion are, then, 

and the axial momentum flux is given by the expression 

M = 2n rpdr. 
/ow 

The full boundary conditions, which are not necessarily independent are 

u = 0, v = 0, awjar = 0, appr = 0, 

w and p are finite on r = 0. 

(u, V ,  W )  -+ 0, p -+ 0, a/ar (u, V, W )  -+ 0, ap/ar --f o 
asr+co .  



A laminar j e t  in a rotatingflzcid 69 

A streamfunction y? may be introduced by means of the continuity equation 
so that 

The results of the orders-of-magnitude analysis (viii) indicate that an asymp- 
totic solution of the reduced equations exists. They imply that a t  large axial 
distances from the virtual source of momentum, the profiles of the flow will be 
similar at different transverse sections. Thus, by suitable substitutions, the equa- 
tions ( l l)-( 13) may be simplified to ordinary differential equations by expressing 
them in terms of similarity functions. 

The forms of the substitutions are given by (viii), and are: 

where x = +( !2/v)a r2/z8. 
The circulation r ( r ,  x )  is introduced a t  this stage because it makes the reduced 

equations even in r.  This permits the use of x as a similarity variable (rather than 
the more usual form of xi) and hence a simpler form is obtained for the derived 
equations. 

The substitution of (15) into equations (11)-( 13) gives 

h = xm' 

- f - 3xf' = 3 x h ,  

0 = m+xm'-3f"-3xfm. 

The integral expression (14) becomes 
r m  

1 = j m(x)dx .  
0 

I n  equations (16)-( 18), primes denote differentiation with respect to x. 
The velocity components are now of the form 

In  terms of the similarity functions, the full boundary conditions are 

x-*f(x) + 0,  x-&(z) -+ 0, f'(x) and m(x) finite as x -+ 0;  

x-&f(x) -+ 0,  Xif '(x) -+ 0, x f y z )  3 0, 

x-Jh(x) -+ 0, h'(x) -+ 0, m(z) 3 0, 

x*mf(x) -+ 0, as x + m .  
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Hence, from equation (18), it  follows directly that m(0) = 3f”(O) and on integra- 
tion that 

xm = 3xf” + c, 

where c is a constant which can be seen to be zero from the conditions on x = 0. 
Therefore, 

Substituting for m(x) in equation (16) and (19) gives 

m(x) = 3f”(x). (20) 

h(x) = 3xf”’(x), (21) 
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FIGURE 1. Radial velocity profilo, 

andf’(0) = - Q. 
equation in the similarity stream-function alone 

’inally, substituting for h(x) in equation (17) gives a I 

9x2fv + 18xyv + 2xf’ + f  = 0. 

The boundary conditions on equation ( 2 2 )  are 

x-*f(x) + o as x-+ 0, 

x-if(x) -+ 0 and x*f’(z)+O as x+ 00. 

f ’ (0)  = -9, f”(0) is finite, 

ifferential 

( 2 2 )  

The solution of equation ( 2 2 )  was obtained by numerical integration. The de- 
tails are given in the appendix. The velocity and pressure profiles are shown in 
figures 1, 2 ,  3 and 4, respectively, with an abscissa xt which is proportional to r. 
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FIGURE 2. Swirl velocity profile. 
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An important feature of the solution is that, although the condition u + 0 
was applied for large r ,  the much stronger condition ru -+ 0 is found to hold. That 
is, the radial mass flux per unit axial length, pru, decreases to zero as r increases. 
It follows that the entire flow arising from the source of momentum is confined in 
the radial direction. Using this result, integration of the continuity equation 
over a transverse plane leads to the condition 

0.7 
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0.5 

dr 

NiO * 0.4 - - .A. Ic: 
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FIGURE 4. Pressure profile. 

where J is the constant mass flux across transverse planes. However, when it is 
expressed in terms of the similarity variables, the integral is found to be de- 
pendent on z and so J must be zero. This result can, of course, be obtained directly 
from the series solutions (A l) ,  (A 2 )  of equation ( 2 2 ) .  It follows that there must 
be a region of reversed axial flow. 

In the flow outside the core of the jet there is an approximate geostrophic 
balance and the radial flow is consequently weak. As this weak radial flow is 
towards the jet axis and as angular momentum is conserved, the swirl velocity in 
this region is increased slightly by the presence of the jet, i.e. the relative swirl 
velocity is positive but small. The relative radial pressure-gradient is therefore 
positive and small also. Since the relative pressure decreases to zero as r increases, 
it follows that the relative pressure outside the core is negative. 
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In  the core of the jet there is a strong radial outflow (compared with the radial 
flow outside the jet) and so the relative swirl velocity is large and negative in 
this region of the flow. Hence, the relative pressure-gradient is also large and 
negative and this gives the relative pressure distribution a maximum on the jet 
axis. 

It is of interest to compare these results with those obtained for a related 
problem by Long (1958, 1961). The flow considered by Long was that due to an 
intense vortex in an infinite viscous fluid. He assumed that the vorticity was 
concentrated into the core of the vortex, so that the circulation K outside the 
vortex core was independent of radius, and that Coriolis-force terms were 
negligibly small, i.e. R, 1. Long found that the shape of the flow profiles changed 
radically as the non-dimensional parameter N = M / k 2  varied. He found also 
that, above a certain minimum value of N ,  the profiles were not even determined 
uniquely by N .  This contrasts with the results given here in which the profiles 
are found to be similar for all flows of the type considered. Another point of 
difference is that, for the fast-swirling jet, the relative pressure was found to have 
a minimum value on the axis, as was to be expected from Bernoulli’s equation. 
However, when the relative motion is small, a complete reversal is found with 
the relative pressure at a maximum on the axis. 

Finally, there are two possible limiting processes to the flow. They are M -+ 0 
and Q -+ co, the first of which is trivial. To obtain the second limit, a change of 
the independent variables r and z is required so that the similarity variable x 
does not involve Q explicitly. This may be achieved by introducing the non- 
dimensional variables 7 = ria and < = z/a where a = (v /a)* .  The similarity vari- 
able now takes the form x = q2 /2@.  When expressed in terms of 7 and [, it  is 
found that the velocity components are proportional to Q* and the pressure to Q. 
This is consistent with the result 6 a Q-* obtained above in that the core of the 
jet becomes narrower and the velocity components and relative pressure cor- 
respondingly larger as n is increased. 

Appendix: Solution of the reduced equations 
The expansion off(x) for small x is found by substituting the series 

W 

f (4  = 2 a,xn 
n=O 

into equation ( 2 2 ) .  This substitution leads to a recurrence relation, 

- ( 2 n +  1) 
9(n + 3) (n  + 3)  (n + 1)2 n ’ 

Qll_t3 = __ ___ 
a, 

from which three independent solutions can be obtained. The other two solutions, 
involving logx, do not satisfy the finiteness conditions on x = 0 and. so are 
rejected. 

The expansion off (5) which satisfies all the boundary conditions on x = 0 is 

1 f (2) = - j~x (1-=+ x3 ... 

723 
... +a3x3 I------- +...), ( A l )  ) ( 12,960 
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where a, and a3 are constants which are determined by the required behaviour 
of the solution for large x. 

The expansion off(x) for large x is found similarly. Substituting the series 

f ( ~ )  = x bnx-a-n 
cc 

n = O  

into equation (22 )  leads to the recurrence relation 

bn+3 - - 9 ( n + * ) ( n + ~ ) ( n + ~ ) , ( n + 5 )  -__ 

b, 2 ( n  + 3) 
Y 

with a = 4. This gives only one independent solution. The other four solutions 
may be found from a substitution of the form 

f ( x )  = box-geCxB, 

where b,, c and are constants. This gives the full expansion of f ( x )  for large x 
to be 

+ x-9 e-U(b, cosy + b, sin y) + x-4 eU(b3 cos y + b, sin y), ( A  2 )  
where y = (27x3/36)$ and the bL (i = 1,2,3,4) are constants. The boundary con- 
ditions onf(x) require that, as x -+ m, the exponentially large terms be absent. 
It will now be shown, by considering the asymptotic expansion of (Al) ,  that 
a, and a3 can be chosen to make b, and b, zero. 

The expansion of f ( x )  for small x can be expressed in terms of generalized 
hypergeometric functions, thus : 

where wl = - 2 ~ ~ 1 3 ~ .  

general theory given by Wright (1935). It is found that, for large x 

f ( x )  - (asl - a2a2 sin ( ~ 1 1 2 )  - a3a3 cos ( n / 1 2 ) )  x% cos y . e U  

The asymptotic expansions of these functions can be obtained from the 

+ ( a , + a , a , c o s ( n / 1 ~ ) ) + a 3 a 3 s i n ( n / l ~ ) x ~ s i n y . e ~ ,  
where "1 = - (Z7/36)f, a, = 2%32(+) ! n-1 

The exponentially large terms vanish, therefore, when 

The substitution of these values in ( A 3 )  leads to an expression for f ( x )  in 

a - 2%33( - Q)! n-1. and 3 -  

a 2 -  - 2-43-2(-+)! and a3 = -2-%-3(&)!. 

terms of a single generalized hypergeometric function 

where w2 = - 2fx/3.  



A laminar je t  i n  a rotating $ukl 75 

However, the flow profiles were not obtained from (A4) directly because the 
series converges only slowly. Instead, as all the boundary conditions for small x 
were then known numerically, the profiles were obtained by numerical integra- 
tion of equation ( 2 2 )  outwards from a small non-zero value of x (to avoid the 
singularity in the equation at  x = 0). 

I wish to thank Dr B. R. Morton most warmly for his constant guidance and 
encouragement throughout the preparation of this paper. I am indebted also 
to Mr E. J. Watson for his advice on the work described iii the appendix. 
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